

Quantifying Post-harvest Losses and GHG Emissions from Banana Supply Chains in Sri Lanka

Kamalakkannan, S^A, Wasala, W.M.C.B^B, Kulatunga, A.K^A, Gunawardena, C.R^B, Bandara, D.M.S.P^B, Jayawardana, J^A, Rathnayake, R.M.R.N.K^B, Wijewardana, R.M.N.A^B, Weerakkody, W.A.P^B, Ferguson, I^C, **Chandrakumar, C^D**

- Department of Manufacturing and Industrial Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka. A
- National Institute of Post-Harvest Management, Anuradhapura 50000, Sri Lanka. В
- С Titirangi, Auckland 0604, New Zealand.
- thinkstep-anz, 11 Rawhiti Road, Pukerua Bay, Wellington 5026, New Zealand. D

Background

- Banana is a popular fruit consumed by Sri Lankans, which has cultural values.
- Sri Lanka produces several banana varieties both for domestic and export markets.
- It is estimated that 30-40% of the banana harvest is lost during post-harvest stages causing significant economic and environmental impacts.
- Post-harvest losses are largely due to improper handing, poor transportation and lack of infrastructure and technologies.
- However, to date, limited research is undertaken in Sri Lanka.

Table 1: LCA Scope and System Boundaries

Definition	Description
Scope	Cradle-to-retailer gate
Functional unit	1 tonne of sour banana ready for consumption
LCI data/exclusions	 Impacts related to infrastructure and capital are excluded. Banana production impacts are sourced from ecoinvent (Indian dataset – proxy)

Results and Discussion

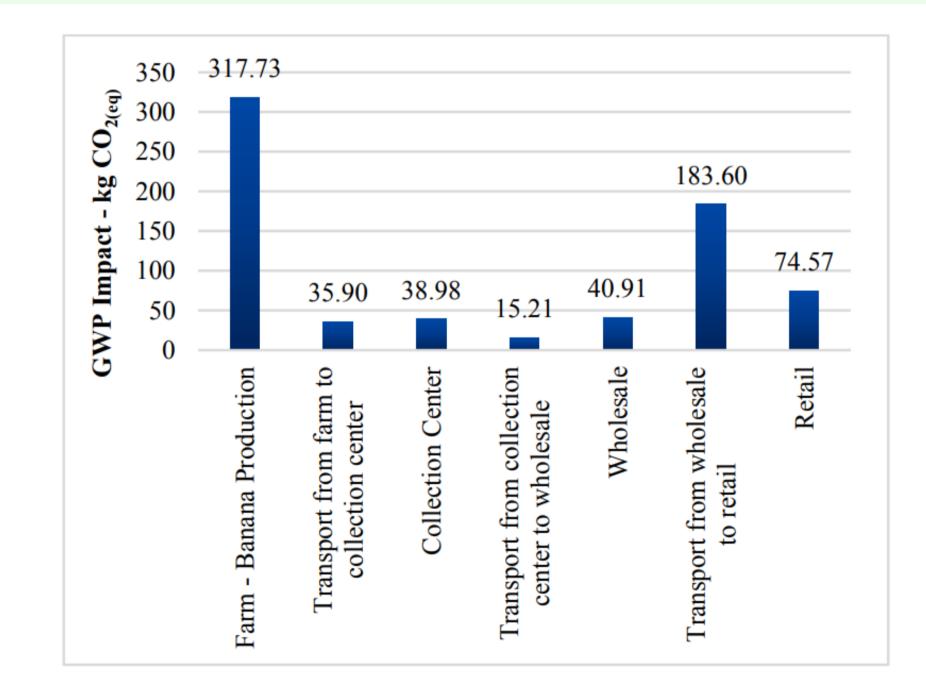

- Cradle-to-retail gate GHG emissions of 1 tonne of sour banana is 707 kg CO₂-eq, measured using GWP100 metric, as shown in Figure 3.

Figure 1: Poor Handling Practices in Sri Lanka

• Largest contributor is on-farm banana production activities (318 kg CO₂-eq), which is largely driven by irrigation activities that are powered by coal-based electricity in Sri Lanka.

- Transport from wholesale to retail is the second largest contributor (184 kg CO₂-eq) driven by significant transport distances, followed by retail activities (75 kg CO₂-eq) driven by organic wastes disposal.
- Scenario analyses showed that using rail as an alternative transportation mode could reduce GHG emissions by 67 kg CO_2 -eq per tonne.
- Total post-harvest losses of sour banana is 27% the largest in the retail stage (7.9%) followed by transportation from wholesale to retail (7.6%) and wholesale stage (6.2%). This is associated with 271 kg CO_2 -eq of GHG emissions (see Figure 4).
- It gives an indication that reducing post-harvest losses is crucial for mitigating the environmental impacts of the banana supply chain in Sri Lanka.

Objective

This study aims to quantify post-harvest losses and related environmental impacts (mainly, climate change) of the sour banana variety across its supply chain in Sri Lanka – using Life Cycle Assessment (LCA)

Methodology

- Consequential LCA is undertaken, according to the ISO14040/14044 standards.
- Cradle-to-gate (retailer) boundary is considered.
- Life Cycle Inventory (LCI) is developed based on field surveys, observations and personal interviews, covering two major supply chains of sour banana :
 - Farmers, fruit collectors and wholesale sellers in Embilipitiya and Thambuttegama;
 - Retailers in Kandy, Colombo and Gampaha.
- Collected data is categorised as follows: farm, collection centre, wholesale seller, retailer and transport.
- LCA is undertaken using SimaPro 8.3 with IPCC 2013 GWP 100 factors.

Figure 3: Cradle-to-Gate (Retailer) GWP100 Impacts of the Banana Supply Chain (FU: 1 tonne sour banana)

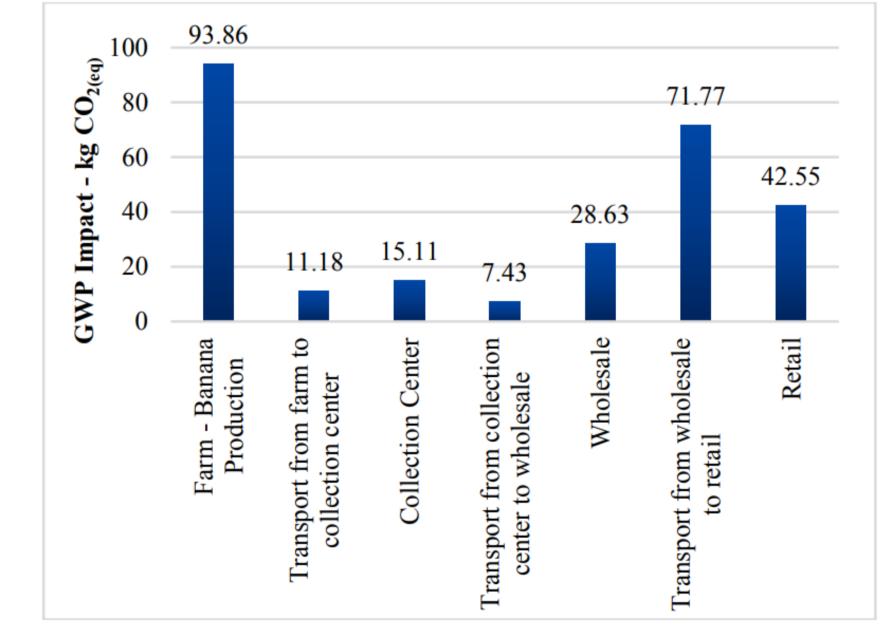


Figure 4: Cradle-to-Gate (Retailer) Post-Harvest Losses related GWP100 Impacts (FU: 1 tonne sour banana)

Conclusions

- In Sri Lanka, 27% of the sour banana produced is lost during post-harvest stages, which is significant both economically and environmentally.

Figure 2: Field Surveys for Data Collection

• Policy and technological interventions are required at all stages of the banana supply chain to mitigate post-harvest losses. This includes development of an action plan for the sector.

• The lessons and experience from this study are relevant for other fresh fruits and vegetables in Sri Lanka and other developing countries.

Key project outcomes

- Kamalakkannan et al. (2022). Life Cycle Assessment of Food Loss Impacts: Case of Banana Postharvest Losses in Sri Lanka. Procedia CIRP 105, pp. 859-864.
- Chandrasiri et al. (2022). Mitigating Environmental Impact of Perishable Food Supply Chain by a Novel Configuration: Simulating Banana Supply Chain in Sri Lanka. Sustainability 14(19), 12060.

Acknowledgements

This study is funded by the New Zealand Government in support of the objectives of the Global Research Alliance on Agricultural Greenhouse Gases.

Correspondence: Dr Chanjief Chandrakumar (Chanjief.Chandrakumar@thinkstep-anz.com)

