Innovations to enhance agroecosystem resilience and adaptation to climate change in drylands of China

Institute of Environment and Sustainable Development in Agriculture
Chinese Academy of Agricultural Sciences

10th August, 2020
Outline

- The climate change and water crisis
- The matching of water resources, agrotechnologies and crops
- The innovation R&D, extension and adoption
The importance of enhancing resilience and adaptation of agriculture to climate change in the drylands of North China

Cultivated land area 51%
Water resource 19%
Total grain yield 59%
Dryland grain yield 30%
Vulnerable ecological area 70%

Mean annual temperature changes (1951-2001)

Annual air temperature $\uparrow \sim 1.1^\circ C$
Warming rate $\sim 0.22^\circ C/10a$

(China Climate Change Info-Net)
The increased frequency of severe drought in northern regions of China
Precipitation meeting crops’ need decreased 5%

Matching the precipitation with innovative technologies and crop patterns

Precipitation

Agrotechnologies
- Residue incorporation
- Plastic mulching
- Cropping systems
- Tillage
- Fertilization
- Irrigation techniques

Crop species
- Maize
- Wheat
- Potato
- Soybean
- Cotton
- Others
Plastic mulching increases crop yield and water use efficiency (WUE)

Plastic mulching effect on yield and WUE for different crop species of China

- **Mulching area for crops** 13%
- **Crop yield** ↑ 45.5%
- **WUE** ↑ 58.0%

(Sun et al., 2020)
Innovation R&D—Soil-Crop canopy system approaches

Canopy manipulation
- Intercropping
- Rotation
- Planting density

Soil management
- Plastic/organic mulching
- Organic input
- Deep/reduced tillage
- Green manure
Canopy manipulation

- Planting density

Crop transpiration ↑ **300-550 mm**
Crop yield ↑ **12.0%-20.6%**
WUE ↑ **12.7%-17.4%**

- Intercropping

Millet-peanut intercropping, Precipitation interception infiltration ↑ **45%-69%**
Maize-soybean intercropping, Radiation interception ↑ **13%-19%**
WUE by intercropping ↑ **21%**
Soil management

- Organic input
- Deep tillage

- Organic mulching
- Plastic mulching

- Water holding capacity \uparrow 12%-23%
- Carbon footprint \downarrow 15%-29%
- Crop yield \uparrow >10%
- Yield fluctuation \downarrow 15%-27%

- Soil water storage \uparrow 25.4 mm
- Soil evaporation \downarrow 8.9 mm
- Soil wind erosion \downarrow 0.45 t/ha
Innovation extension and adoption—Northeast China

Crop species

<table>
<thead>
<tr>
<th>Year</th>
<th>Maize</th>
<th>Sorghum</th>
<th>Millet</th>
<th>Soybean</th>
<th>Peanut</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Precipitation WUE: ↑ 14%-19%
- Soil erosion: ↓ 36%-43%
- WUE by maize and peanut intercropping: ↑ 19%

Agrotechnologies

- Intercropping improving resource efficiency
- Straw mulching preventing soil erosion
- Deep tillage increasing soil water storage

Deep plowing combined tillage machine
Patent NO.: ZL201521003694.6
Innovation extension and adoption—Northwest China

Crop species

- Wheat
- Maize
- Potato
- Oilseed rape

- 2001
- 2018

Optimized planting density utilizing resources more efficiently

Furrows and ridges plastic mulching collection more rainfall

Green manure during fallow periods increasing soil health

Precipitation WUE: 73.2%

Soil water storage: 20-30 mm (before seeding)

Spring maize WUE: ~40.35 kg/mm·ha

With a maximum of: 54.6 kg/mm·ha
Innovation extension and adoption—North China Plain

Crop species

<table>
<thead>
<tr>
<th>Year</th>
<th>Wheat</th>
<th>Maize</th>
<th>Peanut</th>
<th>Soybean</th>
<th>Cotton</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>2018</td>
<td>40%</td>
<td>60%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Agrotechnologies

- **Deficit irrigation and reduced water input**
- **Drip irrigation with fertilizers increasing resource use efficiency**
- **Deep tillage improving soil physiochemical properties**

Irrigation water ↓ 750 m³/ha

Winter wheat WUE ↑ ~10%
Your valuable comments and suggestions are highly appreciated.