Irrigation in Canada: Improving Water Productivity through Research and

Development

Presented by: Evan Derdall, M.Sc., P.Eng

Agriculture and Agri-Food Canada

Virtual Experts Meeting on Promoting Sustainable Agricultural Development in Drylands

August 10, 2020

Agriculture and Irrigation in Canada

Water use in Canada by province, crop and source

Note(s): Excludes Yukon, Northwest Territories and Nunavut. Totals may not add up to 100% because of rounding.

Source(s): Statistics Canada, 2011, Environment Accounts and Statistics Division, Agricultural Water Survey (survey number 5145).

Irrigation in Canada - History

- Western Canada settled during period of adequate rainfall
- Change in precipitation caused failure of crops and loss of productivity
- Cycle to become more extreme as a result of climate change

Research by D. Sauchyn correlating tree ring data to river flow in South Saskatchewan River Basin (Western Canada)

- Decadal drought of the 30's forced government to act
- Agriculture & Agri-Food Canada worked with farmers to:
 - Implement conservation practices
 - Research new varieties
 - Develop irrigation networks

Irrigation Expansion \rightarrow Water Productivity

- Irrigation expansion occurring in some areas (Saskatchewan 2020-2030)
- Irrigation in some basins accounts for 85% of licensed volume (Southern Alberta)
- Shift in Government role: expansion/development → productivity Water Productivity - marketable yield per unit of water input. How Do we Accomplish:
- Genetics Breeding
- System efficiency conveyance and application
 - Management efficiency scheduling

"More Crop Per Drop"

Case Study: Alberta Irrigation District 10-yr plan

- Alberta water allocation volume is nearing capacity in some basins
- New allocation must come from internal efficiency
- Alberta developed 10-yr plan

DISTRICT WATER BALANCE

Other

Canal and Reservoir Seepage

■ Canal and Reservoir Evaporation ■ Return Flow

Delivered for Irrigation

Conveyance Efficiency

Conveyance Efficiency

- ► Main Supply Canals \rightarrow Lined Canal (2 3% Water Savings)
- ► Secondary Canals \rightarrow Pipeline
 - Reduced Seepage, Evaporation, Maintain Capacity

Conveyance Efficiency

- Canal return flow accounts for 11% of water diverted
- SCADA Supervisory Control and Data Acquisition
 - On demand systems reduces flow losses through diversions

Irrigation System Application Efficiency

55%

82%

Improved Efficiency Improved Productivity

Irrigation System Conversion

Net Result of On-Farm System Improvements

System Type	Efficiency Range	Average Efficiency	Gross Delivery	Water Saving*
Contour Flood	25% – 35%	30%	1000 mm	nţa
Levelled Surface	40% - 65%	55%	545 mm	455 mm
Hand-Move	55% - 65%	60%	500 mm	45 mm
Wheel-Roll	60% - 70%	66%	455 mm	45 mm
Hi Nozzle Ctr. Pivot	70% - 75%	72%	415 mm	40 mm
Drop Tube Ctr. Pivot	75% - 85%	82%	380 mm	35 mm

* Assumes an average NET application of

(300mm)

Case Study: Alberta Irrigation District 10-yr plan

Irrigation Productivity in Alberta

Case Study: Alberta Irrigation District 10-yr plan

Irrigation Licenses vs Annual Diversion in Alberta

Volume (millions of ac-ft)

Agriculture and Agri-Food Canada Research Centres

Yukon territory

CSIDC

- Canada-Saskatchewan Irrigation
 Diversification Centre (CSIDC)
- Federal/provincial/industry/university partnership dedicated to sustainable irrigated production practice
- Conducts, funds and facilitates irrigated research, demonstration, technology transfer and education in support of this goal

CSIDC: Variable Rate Irrigation

- Precision Agriculture applied to irrigation
- Irrigation rates are adjusted by 'pulsing' flow to each sprinkler using a electric/pneumatic water valve,
- Rates are adjusted to meet crop water demand

Variable Rate Irrigation (VRI)

Management: Irrigation Scheduling

<u>Irrigation scheduling</u> - management of the timing and application depth of irrigation events.

- Improves crop yield and quality;
- decreasing nutrient loss;
- improves water use efficiency;

CSIDC promotes adoption through:

- Awareness/demonstration
- Training
- Research into new methods

Through innovation, the Irrigation Crop Diversification Corporation stimulates and services the development and expansion of sustainable irrigation in Saskatchewan.

Management: Remote Sensing

- Remote sensing methods use crop response/measurement as a trigger for irrigation,
- Requires crop canopy to be measured - post emergence,
- Requires additional info only provides trigger, not measure of irrigation depth,
- Used for spatial management - VRI prescriptions

Management: Remote Sensing

- Agriculture & Agrifood Canada currently developing tools,
- Allow irrigator to view data in form to make informed decisions,
- Simple, cost effective tools to improve productivity and increase adoption.

CSIDC: Solar Power

- Where electrical infrastructure lacking, systems typically use diesel combustion generators,
- Research into optimizing management to maximize productivity and minimize cost of power system.

CSIDC: Extension

 $\mathsf{Research} \rightarrow \mathsf{Development} \rightarrow \mathsf{Knowledge} \ \mathsf{Transfer}$

- CSIDC plays role on all phases of the RDT continuum.
- Knowledge Transfer occurs in collaboration with industry and provincial government partners. Through:
 - Training sessions,
 - ▶ Field Days,
 - Demonstration,

CSIDC: Collaboration

International Work

- Conduct International training and exchanges in support of AAFC mandate,
- Facilitated through CSIDC

ICID: International Commission on Irrigation and Drainage

International Work

- Canada hosted ICID Conference 2018
- ICID is a leading scientific, technical, and professional not-forprofit international organization working in the field of irrigation, drainage, and flood management to the promote and achieve sustainable agriculture water management.

Questions

Contact Information: Evan Derdall, M.Sc. P.Eng Agriculture and Agri-Food Canada Email: <u>Evan.Derdall@Canada.ca</u>

Thank-you