

ARC • LNR Excellence in Research and Development

Appropriate Technologies for Soil and Water Management: South African Examples

Prof Sue Walker, Dr Kobus Anderson, Dr Kingstone Mashingaidze & Dr Mohamed M. Ahmed, & Erna Kruger

Agricultural Research Council & Mahlathini Development Foundation South Africa

Overview of Situation in South Africa

- \checkmark About 1/3 of a able land in SA only has low potential
- ✓ Crop production areas & rural communities located in semi-arid areas
 - ✓ Soils have some unsatisfactory characteristics.
 - ✓ Water shortage is due to a **low** and **erratic rainfall** pattern.
 - ✓ High intensity rainfall events, resulting in high runoff losses.
 - ✓ High soil erosion from arable lands by wind and water.
 - ✓ High evaporation rates from bare soil.
 - ✓ Results in poor retention of captured rainwater under conventional tillage.
- ✓ Crop yields and RWP are low
- ✓ High risk of crop failures using conventional production methods

Water and land conservation strategies are needed to address problems of low crop productivity across a large portions of arable area in South Africa.

A Range of Different Soils

000

Water is Important in Farming

- ✓ Water is most limiting natural resource & under increasing stress.
- ✓ Plants need water to grow. The process of photosynthesis uses water to make the building blocks of life for plants.
- ✓ Agricultural water = used to grow fresh produce and sustain livestock. If decrease applied water cause production and yield to decrease.
- Management strategies are most important way to improve agricultural water use and maintain optimal production and yield.
- Many semi-arid areas are marginal for crop production due to low and erratic rainfall with large water losses through runoff and evaporation from soil surface = unproductive water losses that need to be minimized to improve crop production.

Water Productivity of Land (kg m⁻³)

Land Degradation

= reduction in soil capacity to produce crops/biomass for human & livestock

- Use "degradation indicators" or "degradation cause indicators" for quantification purposes
- ✓ Use <u>water and wind erosion</u>, soil salinity, soil acidity, aridity index and rainfall use efficiency, drought and land cover, loss of biodiversity
- Land degradation causes are likely to occur concurrently

Changes across South Africa

Primary acidity and alkalinity status of South African soils

Land Degradation Index

Basket of Climate-Smart Agricultural Interventions

Crop diversification – different crops and varieties;

- Cover crops and/or intercropping and/or agroforestry;
- Change cropping patterns and rotations;
- ✓ Integrated pest & weed management.

Conservation agriculture;

- Integrated nutrient and soil management;
- ✓ Organic agriculture;
- ✓ Soil compaction management;

Water management:

- ✓ Rainwater harvesting;
- ✓ Mulching;

Select intervention for a specific site as a response to soil type and changing climate conditions

Crop Diversification

- Use crop species &/or varieties adapted to mean rainfall & available water.
- Diversify cropping system by introducing alternative crops or varieties, or intercropping or agroforestry.
 - a) Switch crops:

Excellence in Research and Development

WEMA Maize Varieties

- ARC, with WEMA partnership, developed & registered 16 conventional drought tolerant maize hybrids - marketed under trade name Drought TEGO[®].
- Farmers produced bumper yields even in drought years (e.g. WE3127 & WE3128)
- ARC released & registered 5 GM hybrids (WE6206B, WE6207B, WE6208B, WE6209B and WE6210B) with Bt (MON89034) transgene, marketed under trade name Drought *TELA*TM that is sold royalty-free to smallholder farmers.
- Hybrids have resistance to both stalk borer & fall armyworm as well as tolerance to drought & low soil nitrogen.
- Farmers growing Drought *TELA*TM hybrids not need to control fall armyworm
 & achieved good yields in Mpumalanga province despite a disaster 2019/20

Heavy fall armyworm infestation in smallholder farmer's crop in Xikukwani, Limpopo province, (3 March 2017)

No fall armyworm damage in Bt croj

Feedback from WE3127 Maize Farmers 2014/15

Mokopane, Limpopo 2006 – smallholder farmer field (Before WEMA)

- 250 mm rainfall
- 2 t/ha WEMA hybrid vs 1.5 t/ha other commercial hybrids

Mokopane (Limpopo): 9 SHFs from 0.6 t/ha to 1.14 t/ha

Intercropping and Agroforestry

Intercropping

= multiple crops together

Agroforestry - tree crops included

= multiple crops grown during any seasor

e.g. cereal & legumes in field together

e.g. fruit trees & vegetables

- pineapple & citrus
- pepper & tea

Produce similar or higher yields

Climate-Smart Agric in Limpopo 2019-20

- 1. CA intercropping
- 2. Harvesting trad crops; sorghum, jugo beans
- 3. S&W conservation; stone lines

4. Check dams 5. Shallow trench beds

xcellence in Research and Dr.

6. Small dams (lined with bentonite)7. Mango production; pruning, fertilization8. Water committees; drilling boreholes

Cover crops

= any crop to cover soil - to manage soil erosion, soil fertility, soil quality, water, weeds, pests, diseases and biodiversity.

- ✓ Advantages:
 - Prevents soil erosion by wind & water especially on erodible soils on steep areas.
 - Add organic matter to soil; Improves soil texture and structure; Improves infiltration by reducing runoff.
 - Nitrogen fixation (if a legume); Can be cut & as mulch; Cut for fodder for livestock.
- ✓ Disadvantages:
 - If not cut regularly competes for available water & nutrients & sunlight of cash crop;
 - Requires a high level of knowledge and skill.
- Cover crops are only recommended where sufficient rainfall to sustain two crops or with supplementary irrigation

Conservation Agriculture (CA)

- = integrated crop and soil management strategy combining: (FAO, 2008)
- (1) minimum soil disturbance, (2) permanent soil cover by crops, cover crops or crop residues and (3) diversification of crop rotations.
- CA plays a major role in mitigating climate change effects through better soil water retention and improved soil health:
- CA trials conducted in Free State & North West Provinces for 10+ seasons to address - agronomy, pests and diseases, weed control, & soil microbiology.
- situated where rainfall is less than 600mm a year & 16% clay content soil.

Impact:

- For example, during the 2012/13 growing season, the two provinces experienced severe drought causing damage to crops. Good yields were obtained in the CA field on the Hutton soil despite the drought.
- Maize yields showed an increase of between 113 to 167% from the CA fields compared to conventional ploughed-monoculture fields.

Benefits of Conservation Agriculture

Excellence in Research and Development

Crop Production Implements

Full Tillage **Conservation techniques** No-till or minimum Mouldboard plough Conventional tillage tillage Mouldboard plough Rip on the row "Hap ploeg"

Excellence in Research and Development

Climate-Smart Agric in Eastern Cape 2020

1.CA; ripping of highly compacted soil prior to no-till planting2. CA; basin and furrow planting demonstration for Fort Cox ATI learners3. Natural pest and disease control ingredients for brews

4. Building of a shade cloth tunnel in Xhukwane5. Tower garden in Quzini

Rain Water Harvesting (RWH)

- Process to concentrate rainfall as runoff from one area for productive use on another area.
- Macro-catchment
 - Runoff collected from outside farm/field/land boundary
- Non field Micro-catchment
 - Runoff collected from man-made runoff area e.g. rooftops
- Micro-catchment = "in-field rainwater harvesting IRWH"
 - Runoff collected from within farm/field/land boundary
 - Runoff area = promotes runoff, acts as 2nd storage, minimizes soil evaporation with mulch & prevents erosion
 - Basin area = Stops runoff loss, maximizes infiltration, stores water in soil profile, minimizes evaporation
- Requirements = slope not > 8% on non-erodable soils, effective soil depth > 70 cm, annual rainfall 450 – 700 mm. clay >10% or duplex soils & avoid sandy soils.

Runoff strip

pasing after rain

In-field Rain Water Harvesting (IRWH)

Importance of IRWH

Conserves water

 Reduces rainwater loss reduce Es & ex-field runoff

Prevents soil erosion

Improves crop productivity

 \checkmark plant crops in marginal areas

Food security, poverty alleviation & socio-economic status

- ✓ More household food & less poverty
- ✓ Improves socio-economic status
- ✓ Improves health status of community
- \checkmark Profitable farm with lower risk

Benefits of IRWH

- Empowers people to fight food insecurity and poverty in rural areas
- Increases yields by 30-110 %
- Decrease risk of crop failure 43-63 %
- Higher probability 48-54% to break even
- **Socio-acceptable** (increases income, promotes education, improves social wellbeing of community, improves health, reduces crime, increases crop diversity)
- Easy to implement & low maintenance cost

Climate-Smart Agric in KZN 2019-20

- 1. Trench beds and tunnel in Gobizembe
- 2. Mixed cropping mulching and chameleons
- 3. Tower gardens in Ezibomvini

6. Seed saving in Bergville
7. Spring protection in Bergville and
8. Local water committee reticulation to 9 households

7

Rainwater Harvesting Production Implements

In-field Rain Water Harvesting

Daling Plough

Furrow plough

Basin plough

Combined chisel & scraper plough

Excettence in Research and Developmen

Mulching

- = layer of material applied to the bare surface of soil.
- Reasons to apply mulch: conservation of soil water, regulate soil temperature, improving soil fertility & health, reduce weed growth & enhancing visual appeal.
- ✓ Mulch is usually organic in nature temporary (e.g. bark chips).
- ✓ May be permanent (e.g. plastic sheeting).
- ✓ Incorporated naturally into soil by activity of worms and other organisms.
- \checkmark Used both in commercial crop production and gardening,
- ✓ When applied correctly, can dramatically improve soil productivity.
- \checkmark Applied at various times of year
 - ✓ beginning of growing season serve to warm soil by retaining heat.
 - $\checkmark\,$ allows early seeding and transplanting of certain crops,
 - ✓ encourages faster growth.
 - ✓ Mid-season mulch stabilizes soil temperature and water,
 - ✓ prevents weeds growth from stored seeds.

Farm in Response to Weather

• Farmers cannot change weather

But farmers can:

- Know what can be changed and act on it:
 - By changing crops & planting times
 - > By increasing biodiversity in cropping & farming systems
 - By using weather forecasts and Apps
- Learn to cope with climate change and variability
 Anticipate different conditions
 - Use local regular weather and seasonal forecasts

Conclusions

- Climate-smart farming methods:
 - Use limited rainfall for longer periods to buffer dry spells
 - Reduces soil evaporation
 - Avoids risk of crop failure
 - Stops runoff and therefore reduces erosion
 - Increase food production

• Improved Sustainability of Farming System:

- Improved agronomic productivity
- Reduced production risk
- Conserves natural resource base
- Economic more viable
- Socially acceptable by communities

Farmers can make a difference by making the right choices from basket of technologies

Requirements for successful application of these technologies

- Research to be Climate- smart, and sustainable
- Government must give commitment and support
- Small-scale infrastructure must be developed
- Education and training is vital for success
- On-farm trials & demonstration plots & farmers days
 Support:
- From extension by provision of information
- For development of marketing and value chains

Commitment from all stakeholders:

- politicians; policymakers;
- researchers; agribusiness
- NGOs; extension & farmers

WalkerS@arc.agric.za AndersonK@arc.agric.za MashingaidzeK@arc.agric.za MohamedAhmedM@arc.agric.za erna@mahlathiniorganics.co.za

