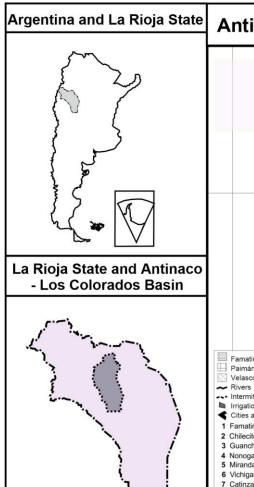


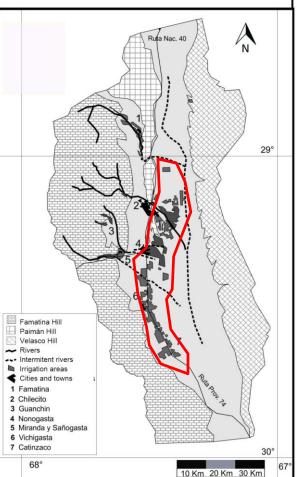
International Virtual Workshop on Water, Energy, Food Nexus Riyadh, Kingdom of Saudi Arabia.

ANALYSIS OF WATER ENERGY FOOD NEXUS IN AN ELECTRO-DEPENDED GROUNDWATER BASIN.

THE CASE OF ANTINACO - LOS COLORADOS VALLEY (ARGENTINA)


Lecturer
Dr. Roberto Esteban Miguel

miguel.roberto@inta.gob.ar



ANTINACO-LOS COLORADOS BASIN (VALLEY)

Antinaco-Los Colorados Basin

Area

Total basin 8200 km² Central Valley 2900 km² Area under study 920 Km²

Arid basin

Precipitation 174 mm/y
Potential evaporation 1193 mm/y
(rain mainly in summer time)

River and Spring Flow

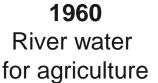
Mean flow $< 2 \text{ m}^3/\text{s}$

Groundwater reserve

18.000 hm³ Bracaccini y Rey, 1951 22.700 hm³ Sosic,1971 4.000 hm³ Poblete y Guimaraes, 2006

Grounwater recharge

136 hm³/y



AGRICULTURE, WATER AND ENERGY TIMELINE

Mostly wine grape and vegetables

Mostly olive, wine grapes, nuts and vegetables

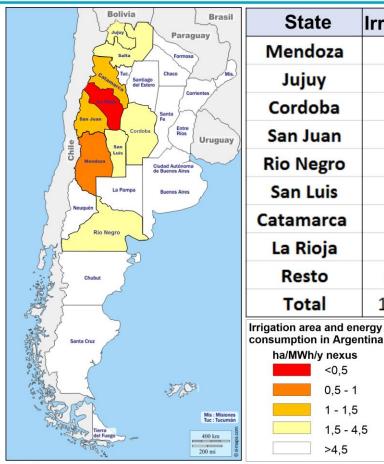
1970

Groundwater
Irrigation
Agriculture colonies
Pumping by fuel
energy

Groundwater
Drip irrigation
Tax deferrals
Pumping by
electricity

2010 to 2020

Groundwater
Drip irrigation and
controlled deficit irrigation
Agro-business
Pumping by electricity
Solar Energy



ELECTRO-DEPENDENCY AND WATER FOR IRRIGATION

State	Irrigated (ha)	Energy (MWh/y)	ha/MWh/y
Mendoza	276.324	474.138	0,58
Jujuy	117.299	32.293	3,63
Cordoba	102.000	32.970	3,09
San Juan	95.704	72.204	1,33
Rio Negro	79.320	24.264	3,27
San Luis	76.437	42.368	1,80
Catamarca	61.847	50.416	1,23
La Rioja	51.738	155.508	0,33
Resto	888.855	80.404	11,05
Total	1.749.524	964.565	1,81

Miguel y Gareis, 2020 [unpublished]

Antinaco-Los Colorados Valley

Irrigated area: 18.090 ha

Electricity for irrigation: 73.255 MWh/y

Nexus: 0,247 ha/MWh/y

Data Sources:

Secretaría de Energía de la República Argentina. Anuario de energía eléctrica. Disponible en https://www.argentina.gob.ar/produccion/energia Organización de Naciones Unidas para la Alimentación y la Agricultura. 2015. Estudio del Potencial de Ampliación de Riego en Argentina. Desarrollo Institucional para la Inversión, UTF/ARG/017/ARG

ha/MWh/y nexus

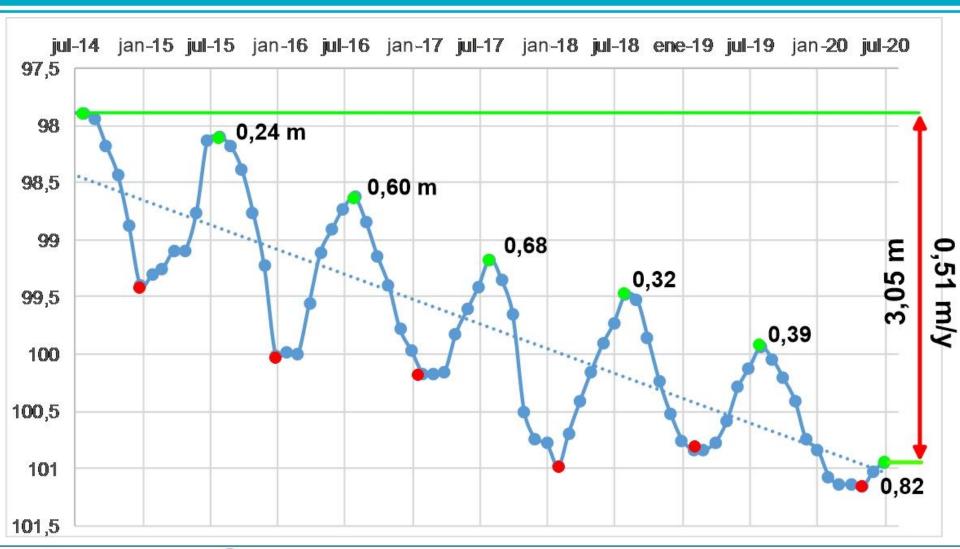
<0,5

0.5 - 1

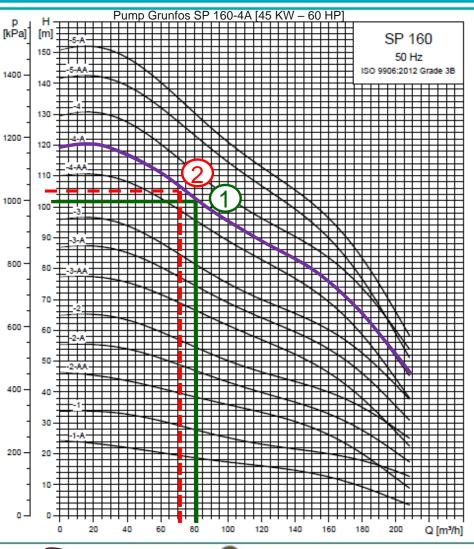
1 - 1,51.5 - 4.5

Frontera agrícola, recurso agua y energía. Ampliación de la frontera agrícola e industrial en la Cuenca Antinaco – Los Colorados. Su implicancia en el recurso hídrico y en la energía. Miguel, Roberto Esteban; Gareis, María Cecilia. Revista RASADEP, Revista de la Asociación Argentina de Ecología de Paisajes. Aprobado. Vol. 7:2. pp 1-11. E-book; http://docs.wixstatic.com/ugd/688647 afbe4d6406cd427fabfd17d5f282f663.pdf

GROUNDWATER LEVEL AND ENERGY CONSUMPTION


- * Data of energy from Chilecito district was provided by EDELaR ANEXO I GCOR 1741_19 RPTA. A N.S. 189939.
- * Data from pumping well 1 INTA EEA Chilecito (Lat: -291511 Long: -67,4352)

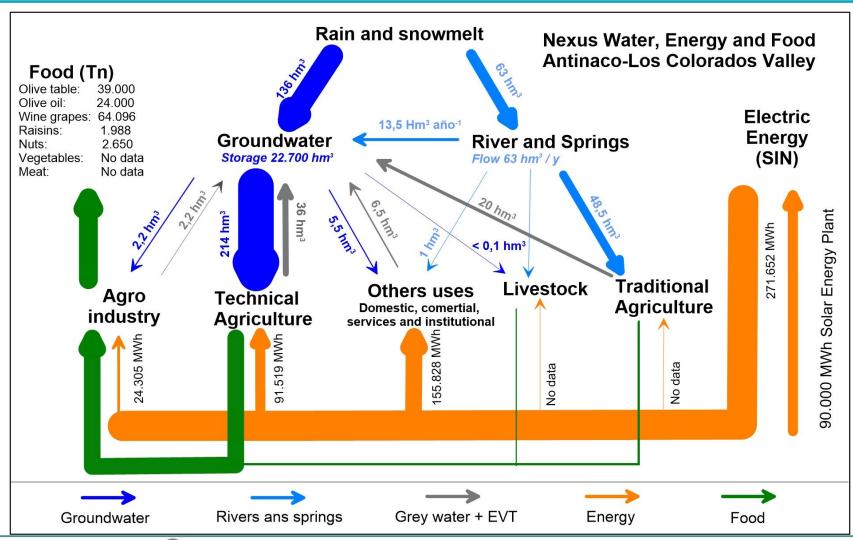
GROUNDWATER DEPLETION



GROUNDWATER DEPLETION AND ENERGY CONSUMPTION

- 1 Dynamic water level= 102 m Flow = 80 m³/h 18 hs x 220 dias = 3.960 h/y Flow = 316.800 m³/y
- Dynamic water level= 105 m Flow = 72 m³ h⁻¹ 18 hs * 220 días= 3.960 h a⁻¹ Flow = 285.120 m³/y

The situation 2 needs 440 hours of additional pumping to equal situation 1. The situation 1 increases the energy consumption in 19800 kWh/y.


- 0,2
 - 0,203 ha/MWh/y
- 2 0,182 ha/MWh/y

NEXUS WATER, ENERGY AND FOOD

CONCLUSION AND COMMENTS

Antinaco-Los Colorados Valley is an arid areas that depends of groundwater and energy to produce food.

The aquifer respond to the pumping with a continuous deeping of groundwater level (intensive exploitation).

The **groundwater depletion** generate an **increase** in the **energy** consumption.

More knowledge and control of groundwater evolution.

Efficient irrigation, However, Can all farmers do efficient irrigation? Who can and who can't? Why? Do we need **policies** according to the type of farmers?.

Policies to generate data to analyze and validate the Nexus.

ANALYSIS OF WATER ENERGY FOOD NEXUS IN AN ELECTRO-DEPENDED GROUNDWATER BASIN. THE CASE OF ANTINACO - LOS COLORADOS VALLEY

International Virtual Workshop on Water, Energy, Food Nexus

Riyadh, Kingdom of Saudi Arabia.

Corresponding author: miguel.roberto@inta.gob.ar