SNAK (Smart Nexus for Agriculture in Korea), Experience of Korea on WEF Nexus

2020. 8. 31

Seung Oh Hur

Senior Researcher & Lab. Head
National Institute of Agricultural Sciences, RDA
Project Title
Development of Water-Energy-Food Nexus platform associating with climate change impacts (2018-2019)

Goals

- Evaluation of sustainability of water, energy, food through the analysis of food demand according to population & climate change, and of the amount of water and energy resources use
- Provide decision-making system and policy scenarios that consider the linkage of climate change, water, energy, food to policy makers
Basic data collection & set up

Climate change
- Past weather
- GCMs
- Down-scaling

Food resource
- Production
- Soil
- Cultivation area
- Cultivation system

Water resource
- Reservoir
- Surface Water
- Groundwater
- Desalination
- Aquifer

Energy resource
- Electric Power
- Renewable
- Fossil Fuel

Assessment of resource management scenarios by nexus system

Crop modelling
- Crop growth
 - Paddy Rice
 - Cereals
 - Vegetables
 - Others

Physical Modelling
- Irrigation system
 - Hydrological characteristics
 - Energy
 - Greenhouse gas emission

Climate change
- Food resource management scenario
 - Energy resource management scenario

Impact assessment
- Environmental
 - Available Water
 - Energy security
 - Greenhouse gas
 - Food self-sufficiency rate
- Economical
 - Benefit/Cost Analysis
 (Farm income, Cost for water and energy, Opportunity cost etc.)

Nexus modelling
- Inventory
 - Scenario application
 - Model linkage
- Test bed
 - Scenario analysis
 - Trade-offs Analysis

Environmental & economical assessment of resource management scenarios by nexus analysis, and test bed
Data Collection

- Weather Data
 - Weather Station
 - Historical Data
 - GCM (Climate Change)
 - Etc.

- Water
 - Pumping Quantity
 - Water Supply System
 - Water Use Amount
 - Etc.

- Food
 - Crop Production Amount
 - Crops Characteristics
 - Soil Types
 - Cultivation Methods
 - Cropping Systems
 - Etc.

- Energy
 - Energy Type
 - Energy Use
 - Energy System
 - Etc.

- Reference Data
 - Productivity
 - Unit Cost
 - Unit Value
 - Etc.

Inventory Construction

<table>
<thead>
<tr>
<th>Nexus Terms</th>
<th>Resource, Types</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Surface water</td>
<td>Resources</td>
</tr>
<tr>
<td></td>
<td>Groundwater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Etc.</td>
<td></td>
</tr>
<tr>
<td>Food</td>
<td>Crops</td>
<td>Crop types</td>
</tr>
<tr>
<td></td>
<td>Etc.</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>Electric</td>
<td>Resources</td>
</tr>
<tr>
<td></td>
<td>Oil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wind</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Etc.</td>
<td></td>
</tr>
<tr>
<td>Water for Food</td>
<td>Water requirement</td>
<td></td>
</tr>
<tr>
<td>Food for Water</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Energy for Food</td>
<td>Fertilizer</td>
<td>Unit Amount</td>
</tr>
<tr>
<td></td>
<td>Chemicals</td>
<td>Unit Amount</td>
</tr>
<tr>
<td></td>
<td>Etc.</td>
<td></td>
</tr>
<tr>
<td>Food for Energy</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Water for Energy</td>
<td>Pumping</td>
<td>Pumping Cost</td>
</tr>
</tbody>
</table>

Analysis, Simulation

- Weather Data
 - Conversion
 - Downscaling

- Water for Food
 - Water Requirement
 - Water Productivity

- Water for Energy
 - Etc.

- Food for Water
 - Etc.

- Food for Energy
 - Etc.

- Energy for Food
 - Unit Energy Use for Fertilizer, Chemical, Machinery, Transportation
 - Unit Cost

- Energy for Water
 - Unit Pumping Energy

Nexus Construction

- Models
 - Vensim
 - Stellar
 - Simulation Models

- Sustainability Analysis

By: Choi, J.Y. (SNU)
Highlight

https://jabistar.com
Use of SNAK for Agricultural Policy

Agricultural environment conservation program : Water management for paddy field

<table>
<thead>
<tr>
<th>Policy Measures</th>
<th>Resources Assessment</th>
<th>Sustainability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigation Method</td>
<td>Water (1,000 m³)</td>
<td>Energy (Gcal)</td>
</tr>
<tr>
<td>Continuous</td>
<td>8,122</td>
<td>1,142</td>
</tr>
<tr>
<td>Intermittent</td>
<td>6,982</td>
<td>1,106</td>
</tr>
<tr>
<td>Change Rate(%)</td>
<td>△14.0</td>
<td>△3.2</td>
</tr>
</tbody>
</table>

* Area 1,000ha, Rate of water source (Reservoir 70: Pumping station 30), Amount of fertilizer(9kg/10a)

Agricultural environment conservation program : Assessment of climate change impact

<table>
<thead>
<tr>
<th>GCM</th>
<th>Policy Measures</th>
<th>Climate Change Scenario</th>
<th>Resources Assessment</th>
<th>Sustainability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Irrigation Method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAD</td>
<td>Continuous</td>
<td>RCP 4.5</td>
<td>8,866</td>
<td>1,167</td>
</tr>
<tr>
<td></td>
<td>RCP 8.5</td>
<td>7,463</td>
<td>1,120</td>
<td>5,379</td>
</tr>
<tr>
<td>GEM</td>
<td>Continuous</td>
<td>RCP 4.5</td>
<td>7,715</td>
<td>1,131</td>
</tr>
<tr>
<td>2-CC</td>
<td>RCP 8.5</td>
<td>6,390</td>
<td>1,086</td>
<td>5,555</td>
</tr>
</tbody>
</table>
Use of SNAK for Agricultural Policy

- Response to climate change: Evaluation of performance indicator for GH gas reduction

- Performance indicator: Rate of intermittent irrigation area in paddy field (97%)

<table>
<thead>
<tr>
<th>Policy for Climate Change Response</th>
<th>Irrigation Method</th>
<th>Applying Area (10,000ha)</th>
<th>GHG (t CO₂eq)</th>
<th>Water (10⁶m³)</th>
<th>Energy (Gcal)</th>
<th>Food Production (1,000ton)</th>
<th>Economic Analysis (B/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>×</td>
<td>Continuous</td>
<td>86.5</td>
<td>5,049,238</td>
<td>7,025.9</td>
<td>988,198</td>
<td>4,954.9</td>
<td>1.35</td>
</tr>
<tr>
<td>○</td>
<td>Intermittent</td>
<td>83.9</td>
<td>4,880,824</td>
<td>5,858.0</td>
<td>927,793</td>
<td>4,957.4</td>
<td>1.39</td>
</tr>
<tr>
<td></td>
<td>Continuous</td>
<td>2.6</td>
<td>151,769</td>
<td>211.2</td>
<td>29,703</td>
<td>148.9</td>
<td>1.35</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>86.5</td>
<td>5,032,593</td>
<td>6,069.2</td>
<td>957,496</td>
<td>5,106.3</td>
<td></td>
</tr>
<tr>
<td>Change Rate (%)</td>
<td></td>
<td>△0.33</td>
<td>△13.6</td>
<td>△3.1</td>
<td>3.06</td>
<td>2.96</td>
<td></td>
</tr>
</tbody>
</table>
Future of SNAK

- Advancement of SNAK: 2 Projects promotion
 - Development of water-energy food nexus technology for agricultural drought impact assessment (2021-2023)
 - Development of evaluation index for agricultural environment conservation program using water-energy-food nexus (2021-2025)

- Future Plan for SNAK: Linkage with Resilience
Development of Water-Energy-Food Nexus
By Cooperation of All
Thank you!