



# **Grasslands & Climate Change Mitigation**

#### Prof. Dr. Nina Buchmann, Institute of Agricultural Sciences, ETH Zurich, Switzerland

nina.buchmann@usys.ethz.ch

## **Grasslands & Climate Change Mitigation**

#### **Motivation**

• Permanent grasslands and ecosystem services for climate mitigation

#### **Climate Regulation**

- Net grassland CO<sub>2</sub> fluxes and resilience to extreme droughts
- Long-term carbon sequestration

#### **Driver of Climate Change**

Impact of restoration

#### **Option for Climate Mitigation**

• N<sub>2</sub>O mitigation experiment

#### **Lessons Learned**

### Permanent Grassland (PG)



**ETH** zürich

### Ecosystem Services: "Multifunctionality" of PG



#### How can these services contribute to climate change mitigation?

(Millenium Ecosystem Assessment 2005)

#### Climate Change: Challenges Now and in the Future



#### Climate Change: Challenges Now and in the Future



### Observational Approach to Measure the «Breathing of the Biosphere»



Continuous CO<sub>2</sub>, H<sub>2</sub>O vapor fluxes, meteo available (... plus much more ...)

- Response to environmental change and management
- Use as a research platform (isotopes, phenology, remote sensing...)
  Long-term data sets (> 99 site-years)
- **Response to slow changes, e.g., climate change; provision of climate regulation**

### Grassland CO<sub>2</sub> Fluxes = function of (Environment, Management)



Strong impacts by environment and management

> High resolution insight into ecosystem physiology, beyond carbon budgets

01 02 03 04 05 06 07 08 09 10 11 12 Time of Year [month] (Zeeman et al. 2010, AFM; Buchmann et al. 2019)

### Long-term Carbon (C) Sequestration (NBP)



> Over 14 years: small annual C sinks

Sink = f (Environment, Management) 9

(Feigenwinter et al. 2019)

### Impact of Restoration on Grassland N<sub>2</sub>O Fluxes



#### **Resilience to Extreme Droughts**

#### Summer drought 2018: annual precip -30% (CHA), -27% (FRU), +3% (AWS)



### Drivers of Climate Change: Greenhouse Gas Emissions

Greenhouse gas emissions in Switzerland (2017)





**Climate Mitigation** 

#### Can legume fractions substitute N fertilization & reduce N<sub>2</sub>O emissions?



### N<sub>2</sub>O Mitigation Experiment



Year

Higher fraction of legumes in sward:
 ▶ 40-50 % lower N<sub>2</sub>O emissions
 ▶ 10 % lower violds, but bigher force

> 10 % lower yields, but higher forage quality

(Fuchs et al. 2018, BG)

Thank You !

### Grasslands and Climate Change Mitigation

#### **Ecosystem Services of Permanent Grasslands**

- Permanent grasslands provide multiple services, incl. climate regulation.
- High-resolution flux measurements are key to collect data on "Breathing of Biosphere".

#### **Climate Regulation of Permanent Grasslands**

- Management and environment affect ecosystem greenhouse gas exchange.
- Permanent grassland soils are small annual C sinks.
- Restoration events can offset long-term soil carbon sinks.

#### **Resilience to Drought Extremes and Option for Climate Mitigation**

- Resilience of grassland productivity is high.
- Strong link between carbon and water fluxes at ecosystem level.
- Grasslands cool the atmosphere longer than forests during a drought.
- Mixtures with legumes can strongly reduce  $N_2O$  emissions w/out trade-offs for yield or quality.