

Transforming Food, Land and Water Systems in a Climate Crisis

Ana Maria Loboguerrero Climate Action Director Alliance BI – CIAT / CGIAR

THE CHALLENGE

1.4 billion living in Poverty

1 billion more People by 2030

1.5 billion

people depend on

Degraded

Land

USD 7.5 billion lost to extreme Weather (2010)

Nearly 1 billion going Hungry

14% more Food needed per decade

+6 °C

+7 °C

UK Met Dept

+4 °C

4 °C

Wa

Major Stressors and Shocks

- **Growing food demand:**
- □ Growing populations
- Changing consumption habits
- Urbanisation

CGIAR Serves for a food-secure luture

- 2010 2018: from 32 million to 56 million undernourished
- Map (March-May 2021): 19.6 million people estimated to require food assistance
- **52 million W-Africans overwei**ght or obese + suffering micronutrient deficiencies

Major Stressors and Shocks

At the same time, growing diversity of shocks:

Pests and zoonoses

Market volatility and trade disruptions

Worsening insecurity

□ State fragility and conflicts

Extreme weather events: drought and flooding

EXTREME EVENTS

We are at 1°C

Many records are being broken

In many regions we have only 9 growing seasons to reach 750 M farming households

Number of record-breaking monthly temperature extremes

now 5X times more Coumou et al. (2013) *Climatic Change*

Dry record-breaking events in SSA have increased by up to 50%

Lehmann et al. (2018) Geophysical Research Letters

Worldwide, the number of extreme climate events is increasing at an alarming rate

Climate vulnerability is closely linked to poverty

FIGURE 10A. Areas of extreme climate vulnerability60

FIGURE 10B. Percentage of population in multi-dimensional poverty in three global regions⁶¹

The mega challenge of African agriculture adaptation to climate change

Change in length of growing period in a +4 °C world (2090)

Farming as we know it now, will not be feasible in many places

TRANSFORMING FOOD, LAND AND WATER SYSTEMS

Transform research, development and innovation systems to deliver impacts at scale

Transforming Food Systems Under a Changing Climate

transformingfoodsystems.com

Climate-resilient agriculture

Viable approach to achieve sustainable use of natural resources in crop and livestock production systems and across food, land, and water systems.

Long-term productivity

Enhance incomes of farmers and other food system actors

+

Improve the affordability of food

Increase resilience to the impacts of climate change

Climate resilience is the ability of a system to 'bounce back' from the impacts of climate-related stresses or shocks

Resilience: Needs to encompass a variety of stressors and shocks

Demographic changes

Political upheaval

Social and technological changes

•• Others

• Vulnerabilities in one area can reinforce vulnerabilities in another: building resilience to climate change and climate impacts influences and is influenced by other forms of resilience within the system

Financial crises

• Resilience-building activities can have positive knock-on effects, mitigating other expressions of vulnerability, such as poverty and food insecurity. Prioritising these activities requires the careful consideration of trade-offs

Going beyond technologies...

AFRICA Drought-tolerant maize boosts food security

- > Working with consumers
- Working with producers
- Working with 100s private sector players

✓ Yields up to 35% more grain

Reduces need to use more land

✓ Resilience to drought

- Developed 100 new varieties
- Released across 13 countries
- 40 million beneficiaries

Local Technical Agro-Climatic Committees in Latin America

Supply Networks. How are products connected?

Key 1

User-centered work

Understanding the needs of tailored climatic information

Circular migration plots showing the flow of information between products in Guatemala Borouncle et al 2020 https://doi.org/10.1016/j.cliser.2019.100137

Building bridges between supply and demand. Understand the information flows

Capacity building and co-design

TOOL Evaluating seasonal climate predictability Designed for MOS applications

The International Research Institute or Climate and Society

Circuits Productability Tool 21 In Data Options View

[3] Esquivel et al. (2018). Climate Services. doi: 10.1016/j.cliser.2018.09.001

predictions Weather and crop predictions

Better

NextGen – AcToday project International Research Institute (IRI) for Climate and Society Válido para Hecho en Lead Time Pronóstico hecho para [92W-91.5W, 14.5N-15N] localizado en o cerca de Sololá, Guatemala [mm] gorg n-Aug 2019 probability of exceedance issued May 201

A new generation of climate forecast

Key 2

Key 3

We need to transform ourselves

Agricultural research for development

Difficult to deliver endto-end, sustainable and scalable solutions How can we change?

More strategic agendas Clear theories of change Less fragmented Involving stakeholders from Day 1 Attention to deployment Success = benefits to society

Thank You!

